Far-UVC light safely kills airborne coronaviruses, study finds
A type of ultraviolet light called Far-UVC -- which is safe to use around people -- kills more than 99.9 percent of airborne coronaviruses, a new study has found.
Read More
Using the Power of Light: Preventing the Airborne Spread of Coronavirus and Influenza Virus
Over the past few years we've developed a promising technique to prevent the airborne transmission of viruses like influenza virus, which we would expect to be effective for coronavirus too. In short the idea is to use the power of light.
Click Here
Improve efficiency and long lifetime UVC LEDs with wavelengths between 230 and 237 nm
Although the pulsed operation of AlGaN-based laser diodes at UV-C wavelengths has been confirmed in the previous studies, continuous oscillation without cooling is difficult because of the high operating voltage.
Click Here
Previous slide
Next slide

Below is a comprehensive, fully searchable, and sortable database housing scientific papers focused on Far-UVC light applications. The field of Far-UVC research is dynamic and continuously advancing. Therefore, this section will be regularly updated with the most recent and relevant information to keep users well-informed.

Scientific Papers

Date Title Author
2021 The abundance of the potential pathogen Staphylococcus hominis in the air microbiome in a dental clinic and its susceptibility to far-UVC light. Aquino de Muro, M., Shuryak, I., Uhlemann, A. C., Tillman, A., Seeram, D., Zakaria, J., Welch, D., Erde, S. M., & Brenner, D. J.
2023 Far UV-C radiation: An emerging tool for pandemic control Blatchley, E. R., Brenner, D. J., Claus, H., Cowan, T. E., Linden, K. G., Liu, Y., Mao, T., Park, S.-J., Piper, P. J., Simons, R. M., & Sliney, D. H.
2023 Far-UVC Light at 222 nm is Showing Significant Potential to Safely and Efficiently Inactivate Airborne Pathogens in Occupied Indoor Locations Brenner, D. J.
2017 Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light Buonanno, M., Ponnaiya, B., Welch, D., Stanislauskas, M., Randers-Pehrson, G., Smilenov, L., Lowy, F. D., Owens, D. M., & Brenner, D. J.
2023 Ocular and Facial Far-UVC Doses from Ceiling-Mounted 222 nm Far-UVC Fixtures Duncan, M. A., Welch, D., Shuryak, I., & Brenner, D. J.
2020 Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses Buonanno, M., Welch, D., Shuryak, I., & Brenner, D. J.
2021 Extreme Exposure to Filtered Far-UVC: A Case Study Eadie, E., Barnard, I. M. R., Ibbotson, S. H., & Wood, K.
2022 Far-UVC (222 nm) efficiently inactivates an airborne pathogen in a room-sized chamber. Eadie, E., Hiwar, W., Fletcher, L., Tidswell, E., O'Mahoney, P., Buonanno, M., Welch, D., Adamson, C. S., Brenner, D. J., Noakes, C., & Wood, K.
2021 Computer Modeling Indicates Dramatically Less DNA Damage from Far-UVC Krypton Chloride Lamps (222 nm) than from Sunlight Exposure Eadie, E., O'Mahoney, P., Finlayson, L., Barnard, I. R. M., Ibbotson, S. H., & Wood, K.
2022 Safety of 222 nm UVC Irradiation to the Surgical Site in a Rabbit Model Fukui, T., Niikura, T., Oda, T., Kumabe, Y., Nishiaki, A., Kaigome, R., Ohashi, H., Sasaki, M., Igarashi, T., Oe, K., Hamblin, M. R., & Kuroda, R
2020 Exploratory clinical trial on the safety and bactericidal effect of 222-nm ultraviolet C irradiation in healthy humans. Fukui, T., Niikura, T., Oda, T., Kumabe, Y., Ohashi, H., Sasaki, M., Igarashi, T., Kunisada, M., Yamano, N., Oe, K., Matsumoto, T., Matsushita, T., Hayashi, S., Nishigori, C., & Kuroda, R.
2020 Viability evaluation of layered cell sheets after ultraviolet light irradiation of 222 nm Hanamura, N., Ohashi, H., Morimoto, Y., Igarashi, T., & Tabata, Y.
2021 The impact of far-UVC radiation (200-230 nm) on pathogens, cells, skin, and eyes - a collection and analysis of a hundred years of data. Hessling, M., Haag, R., Sieber, N., & Vatter, P.
2021 Minimal, superficial DNA damage in human skin from filtered far-ultraviolet-C (UV-C) Hickerson, R. P., Conneely, M. J., Tsutsumi, S. K. H., Wood, K., Jackson, D. N., Ibbotson, S. H., & Eadie, E.
2019 Evaluation of acute corneal damage induced by 222-nm and 254-nm ultraviolet light in Sprague-Dawley rats Kaidzu, S., Sugihara, K., Sasaki, M., Nishiaki, A., Igarashi, T., & Tanito, M.
2022 222 nm Far-UVC from filtered Krypton-Chloride excimer lamps does not cause eye irritation when deployed in a simulated office environment. Photochem Photobiol Kousha, O., O’Mahoney, P., Hammond, R., Wood, K., & Eadie, E.
2016 Fluence (UV Dose) Required to Achieve Incremental Log Inactivation of Bacteria, Protozoa, Viruses and Algae Malayeri, A., Mohseni, M., & Cairns, B.
2006 Efficiency of KrCl excilamp (222 nm) for inactivation of bacteria in suspension Matafonova, G. G., Batoev, V. B., Astakhova, S. A., Gomez, M., & Christofi, N.
2018 Chronic irradiation with 222-nm UVC light induces neither DNA damage nor epidermal lesions in mouse skin, even at high doses Narita, K., Asano, K., Morimoto, Y., Igarashi, T., & Nakane, A.
2020 Ultraviolet C light with wavelength of 222 nm inactivates a wide spectrum of microbial pathogens Narita, K., Asano, K., Naito, K., Ohashi, H., Sasaki, M., Morimoto, Y., Igarashi, T., & Nakane, A.
2023 222-nm UVC light as a skin-safe solution to antimicrobial resistance in acute hospital settings with a particular focus on methicillin-resistant Staphylococcus aureus and surgical site infections: a review Panzures, A.
2021 Far-UVC light as a new tool to reduce microbial burden during spacecraft assembly Seuylemezian, A., Buonanno, M., Guan, L., Brenner, D. J., & Welch, D.
2021 DNA Damage Kills Bacterial Spores and Cells Exposed to 222-Nanometer UV Radiation Taylor, W., Camilleri, E., Craft, D. L., Korza, G., Granados, M. R., Peterson, J., Szczpaniak, R., Weller, S. K., Moeller, R., Douki, T., Mok, W. W. K., & Setlow, P.
2022 Evaluation of UVC Excimer Lamp (222 nm) Efficacy for Coronavirus Inactivation in an Animal Model Tucciarone, C. M., Cecchinato, M., Vianello, L., Simi, G., Borsato, E., Silvestrin, L., Giorato, M., Salata, C., Morandin, M., Greggio, E., & Drigo, M.
2023 Experimental study of the disinfection performance of a 222-nm Far-UVC upper-room system on airborne microorganisms in a full-scale chamber Wang, M. H., Zhang, H. H., Chan, C. K., Lee, P. K. H., & Lai, A. C. K.
2022 Wavelength-dependent DNA Photodamage in a 3-D human Skin Model over the Far-UVC and Germicidal UVC Wavelength Ranges from 215 to 255 nm Welch, D., Aquino de Muro, M., Buonanno, M., & Brenner, D. J.
2023 No Evidence of Induced Skin Cancer or Other Skin Abnormalities after Long-Term (66 week) Chronic Exposure to 222-nm Far-UVC Radiation Welch, D., Kleiman, N. J., Arden, P. C., Kuryla, C. L., Buonanno, M., Ponnaiya, B., Wu, X., & Brenner, D. J.
2015 The effect of 222-nm UVC phototesting on healthy volunteer skin: a pilot study Woods, J. A., Evans, A., Forbes, P. D., Coates, P. J., Gardner, J., Valentine, R. M., Ibbotson, S. H., Ferguson, J., Fricker, C., & Moseley, H.
2020 Long-term Effects of 222-nm ultraviolet radiation C Sterilizing Lamps on Mice Susceptible to Ultraviolet Radiation Yamano, N., Kunisada, M., Kaidzu, S., Sugihara, K., Nishiaki-Sawada, A., Ohashi, H., Yoshioka, A., Igarashi, T., Ohira, A., Tanito, M., & Nishigori, C.
2017 Al1-xGaxN light-emitting diodes on AlN substrates emitting at 230 nm Moe, C.G. Moe, Sugiyama, S., Kassai, K J., Grandusky, J.R., and Schowalter, L.J.
2019 A 271.8 nm deep-ultraviolet laser diode for room temperature operation Zhang, Z., Kushimoto, M., Sakai, T., Sugiyama, N., Schowalter, L.J., Sasaoka, C., and Amano, H.
2020 Improve efficiency and long lifetime UVC LEDs with wavelengths between 230 and 237 nm Yoshikawa, A., Hasegawa, R., Morishita, T., Nagase, K., Yamada, S. Yamada, Grandusky, J., Mann, J., Miller, A., and Schowalter, L.J.
2020 On-wafer fabrication of etched-mirror UV-C laser diodes with the ALD-deposited DBR Sakai, T., Kushimoto, M., Zhang, Z., Sugiyama, N., Schowalter, L.J., Honda, Y., Sasaoka, C., and Amano, H.
2020 Space charge profile study of AlGaN-based p-type distributed polarization doped claddings without impurity doping for UV-C laser diodes Zhang, Z., Kushimoto, M., Horita, M., Sugiyama, N., Schowalter, L.J., Sasaoka, C., and Amano, H.
2020 The 2020 UV emitter roadmap Amano, H., Collazo, R., De Santi, C., Einfeldt, S., Funato, M., Glaab, J., Hagedorn, S., Hirano, A, , Hirayama, H., Ishii, R., Kashima, Y., Kawakami, Y., Kirste, R., Kneissl, M., Martin, R., Mehnke, F., Meneghini, M., Ougazzaden, A., Parbrook, P.J., Rajan, S., Reddy, P., Römer, F., Ruschel, J., Sarkar, B., Scholz, F., Schowalter, L.J., Shields, Philip, Sitar, Z., Sulmoni, L., Wang, T., Wernicke, T., Weyers, M., Witzigmann, B., Wu, Y.R., Wunderer, T., and Zhang, Y.
2021 Impact of heat treatment process on threshold current density in AlGaN-based deep-ultraviolet laser diodes on AlN substrates Kushimoto, M., Zhang, Z., Sugiyama, N., Schowalter, L.J., Sasaoka, C., and Amano, H.
2022 Continuous-wave lasing of AlGaN-based ultraviolet laser diode at 274.8 nm by current injection Zhang, Z., Kushimoto, M., Yoshikawa, A., Aoto, K., Schowalter, L.J., Sasaoka, C., and Amano, H.
2022 Key temperature-dependent characteristics of AlGaN-based UV-C laser diode and demonstration of room-temperature continuous-wave lasing Zhang, Z., Kushimoto, M., Yoshikawa, A., Aoto, K., Sasaoka, C., Showalter, L.J., and Amano, H.
2022 Local stress control to suppress dislocation generation for pseudomorphically grown AlGaN UV-C laser diodes Zhang, Z., Kushimoto, M., Yoshikawa, A., Aoto, K., Sasaoka, C., Showalter, L.J., and Amano, H.
2023 Far-UVC: Technology Update with an Untapped Potential to Mitigate Airborne Infections Bueno de Mesquita, P. Jacob, Sokas, Rosemary K., Rice, Mary B., Nardell, Edward A.
2023 Evaluating the Impact of 222 nm Far-UVC Radiation on the Aesthetic and Mechanical Properties of Materials Used in Public Bus Interiors Drungilas, D., Kurmis, M., Tadzijevas, A., Lukosius, Z., Martinkenas, A., Didziokas, R., Gruode, J., Sapalas, D., & Jankunas, V.
2021 Aerosol tracer testing in Boeing 767 and 777 aircraft to simulate exposure potential of infectious aerosol such as SARS-CoV-2 Kinahan, S. M., Silcott, D. B., Silcott, B. E., Silcott, R. M., Silcott, P. J., Silcott, B. J., Distelhorst, S. L., Herrera, V. L., Rivera, D. N., Crown, K. K., Lucero, G. A., & Santarpia, J. L.
2023 An excimer lamp to provide far-ultraviolet C irradiation for dining-table disinfection Lv, M., Huang, J., Chen, H., & Zhang, T. T.
2017 A model for choosing an automated ultraviolet-C disinfection system and building a case for the C-suite: Two case reports. Am J Infect Control Spencer, M., Vignari, M., Bryce, E., Johnson, H. B., Fauerbach, L., & Graham, D.
2018 Far-UVC light prevents MRSA infection of superficial wounds in vivo Ponnaiya, B., Buonanno, M., Welch, D., Shuryak, I., Randers-Pehrson, G., & Brenner, D. J.
2023 The public-health significance of far-UVC-induced indoor ozone and its associated secondary chemistry Brenner, David J.
2022 Model Evaluation of Secondary Chemistry due to Disinfection of Indoor Air with Germicidal Ultraviolet Lamps Peng, Zhe; Miller, Shelly L.; and Jimenez, Jose L.
2023 Air and Surface Treatment Using Germicidal Ultraviolet-C (GUV) Claus, H., America, U., Clark, M.

Videos

In this 2020 TED Talk, radiation scientist David Brenner describes how we could use this light to stop the spread of SARS-CoV-2, the virus responsible for COVID-19, in hospitals, nursing homes, trains and other public indoor spaces – paving the way for a potentially game-changing tool in the fight against the coronavirus pandemic. (This virtual conversation, hosted by TED science curator David Biello, was recorded July 7, 2020.)

In a talk from the frontiers of science, radiation scientist David Brenner shares his work studying a potentially life-saving weapon: a wavelength of ultraviolet light known as far-UVC, which can kill superbugs safely, without penetrating our skin. Followed by a Q&A with TED Curator Chris Anderson.

In an interview with Care222, Dr. David Brenner, the Director of the Center for Radiological Research at Columbia University. He discusses the work that he and other scientists have done over the last several years around the effects of Far UV-C light for the potential benefit of public health.

For years, filtered Far-UVC light has been proven to effectively inactivate bacteria and viruses on surfaces and in water. A recent peer-review study published in the Scientific Reports journal by Nature further investigated this topic and found amazing results.